Key words: Shared Pointers in C++, Implementing a custom shared_ptr in C++, Atomics in C++
Topics at a glance:
- Sharing ownership via Shared Pointers and their need
- Atomics in Shared pointer
In this chapter, I will show you how to make a custom Shared_Ptr from our Chapter 9’s Unique_Ptr using C++’s atomics.
Shared Pointers in C++
Shared Pointers using template specialization and C++ atomics
We have seen how to implement our own Unique_Ptr class using template specialization. Unique_Ptr’s only support move semantics and no copy operation is allowed. Of course the sole purpose of Unique_Ptr is to avoid multiple owners for the same memory region at any given point of time. Using move you can only transfer ownership of memory through a Unique_Ptr. What if you want shared ownership? Then we need to use C++’s 2nd smart pointer i.e. the ‘std::shared_ptr’. Shared pointers allow multiple ownership achieved through two things:
- Shared pointers allow copy semantics (obviously)
- Shared pointers uses a reference count (use count) mechanism that tracks the current number of owners that uses the shared memory region
- Shared pointers will delete/release the memory back to free store only if the reference count reaches 0.
So, that is how shared pointers work.
Implementing a custom shared_ptr in C++
Now, to implement our shared pointer, let us use the Unique_Ptr code from previous chapter and rename ‘Unique_Ptr’ to ‘Shared_Ptr’. Not only that. We will need to introduce a reference counter. Reference counter cannot be a local count data to Shared_Ptr object instances as after copying the ownership Shared_Ptr should use the exact same instance of reference count to track the owners in all copies of Shared_Ptr objects.
This bring another issue. Unlike old generation computers and OS’s all modern CPU’s support actual multi-threading and parallel computing. So there can be multiple threads sharing ownership of memory through instances of Shared_Ptr’s. This will result in data race condition. And reference count is likely to be changed from different threads simultaneously. Reference count is the only thing that matters for Shared_Ptrs to delete pointer and release back the memory. So it is imperative to protect reference count from data race conditions associated with multi-threaded environments. How to do that?
Atomics in C++
C++ gives some essential facilities to deal with issues inherent to multi-threaded environments. One we can consider here is mutex lock (mutually exclusive lock), and other is atomics. I prefer atomics here. Mutex is very difficult to apply here. As who will take care of releasing the mutex itself at the end of Shared Pointer’s life-cycle. The same mutex needs to be used for the same reference count in case of shared ownership. So why to go for all such headaches. Let us use the simple atomics. Atomics guarantees completion of execution of any operation without interruption. We’ll use C++’s std::atomic for defining the reference counter in our Shared_Ptr. So I will point out once again the key features to be implemented on Unique_Ptr to make it a Shared_Ptr class.
From Unique_Ptr to Shared_Ptr code modification:
- Replace Unique_Ptr to Shared_Ptr
- Define copy operations
- Implement an atomic reference count member that could be shared between copies of Shared_Ptr instances
- Define a use_count() member function that will return the current value of reference count
That’s it. Now, with all this information, let us implement Shared_Ptr. NOTE: For now, I am not defining any custom make_shared as we did for Unique_Ptrs. Let us use the basic new operation for constructing objects and pass the returned pointers to make Shared_Ptr instances.
Also note that I have retained all the default and custom deleters that I have used in Unique_Ptr.
Please go through the detailed and elaborated code below, and understand how the points discussed above are actually implemented.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | #include <iostream> #include <atomic> using namespace std; // single object deleter version template<typename T> struct default_deleter // default_deleter is a functor or function object { // don't have any private/public/protected data void operator()(T* ptr) { if(ptr != nullptr) // this check is very important { cout << "default_deleter" << endl; // default deleter is as good as a // direct delete on the pointer. // There cannot be any custom cleanup here. delete ptr; } } }; // Array deleter version template<typename T> struct default_deleter<T[]> // default_deleter is a functor or function object { // don't have any private/public/protected data void operator()(T* ptr) { if(ptr != nullptr) // this check is very important { cout << "default_deleter [] " << endl; // default deleter is as good as a // direct delete on the pointer. // There cannot be any custom cleanup here. delete []ptr; } } }; // An example of default template type. // TP's default 'type' is default_deleter<T> // If provided, a custom deleter TP, user can either // install a functor object or it can be a simple // function pointer which accepts a pointer parameter. template< typename T, typename TP = default_deleter<T> > class Shared_Ptr { private: std::atomic<int*> reference_count; T* raw_ptr; TP deleter; // will get constructed anyways with default_deleter type public: explicit Shared_Ptr(T* object) : raw_ptr{object}, reference_count(new int(1)) // cannot use {}, use () { cout << "Shared_Ptr created with Ref count : " << *reference_count << endl; } // constructor which accepts a custom deleter Shared_Ptr(T* object, TP custom_deleter) : raw_ptr{object}, deleter{custom_deleter}, reference_count(new int(1)) // cannot use {}, use () { cout << "Shared_Ptr created with Ref count : " << *reference_count << endl; } ~Shared_Ptr() { if(reference_count != nullptr) { --(*reference_count); cout << "In Shared_Ptr Destructor Ref count : " << *reference_count << endl; if(*reference_count <= 0) { if(raw_ptr != nullptr) { // call deleter deleter(raw_ptr); } } } } TP& get_deleter() { return deleter; } // define copy operations Shared_Ptr(const Shared_Ptr& other_shared_ptr) { // do not create a new reference_count, copy the pointer from other_shared_ptr reference_count = other_shared_ptr.reference_count.load(); if(reference_count != nullptr) { ++(*reference_count); cout << "In Shared_Ptr Copy Constructor Ref count : " << *reference_count << endl; } raw_ptr = other_shared_ptr.raw_ptr; deleter = other_shared_ptr.deleter; } Shared_Ptr& operator=(const Shared_Ptr& other_shared_ptr) { // do not create a new reference_count, copy the pointer from other_shared_ptr reference_count = other_shared_ptr.reference_count.load(); if(reference_count != nullptr) { ++(*reference_count); cout << "In Shared_Ptr Copy =operator Ref count : " << *reference_count << endl; } raw_ptr = other_shared_ptr.raw_ptr; deleter = other_shared_ptr.deleter; return *this; } // Define move operations Shared_Ptr(Shared_Ptr&& other_shared_ptr) { // transfer the ownership of memory raw_ptr = other_shared_ptr.raw_ptr; other_shared_ptr.raw_ptr = nullptr; reference_count = other_shared_ptr.reference_count.load(); other_shared_ptr.reference_count = nullptr; deleter = other_shared_ptr.deleter; } Shared_Ptr& operator=(Shared_Ptr&& other_shared_ptr) { // transfer the ownership of memory raw_ptr = other_shared_ptr.raw_ptr; other_shared_ptr.raw_ptr = nullptr; reference_count = other_shared_ptr.reference_count.load(); other_shared_ptr.reference_count = nullptr; deleter = other_shared_ptr.deleter; return *this; } // define basic operations supported by a regular pointer // 1. dereference operation T& operator*() const { return *raw_ptr; } // 2. member selection operation T* operator->() const { return raw_ptr; } // 3. indexing operation ( ONLY for array version ) /*T& operator[](const int index) { return raw_ptr[index]; }*/ // 4. equality check bool operator==(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr == other_shared_ptr.raw_ptr); } // 5. in-equality check bool operator!=(const Shared_Ptr& other_shared_ptr) const { return!(this->operator==(other_shared_ptr)); } // 6. less than bool operator<(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr < other_shared_ptr.raw_ptr); } // 7. greater than bool operator>(const Shared_Ptr& other_shared_ptr) const { return!(this->operator<(other_shared_ptr)); } // 8. less than or equal bool operator<=(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr <= other_shared_ptr.raw_ptr); } // 9. greater than or equal bool operator>=(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr >= other_shared_ptr.raw_ptr); } T* get() const { return raw_ptr; } explicit operator bool() const { return (raw_ptr != nullptr); } T* release() { T* temp = raw_ptr; raw_ptr = nullptr; reference_count = nullptr; return temp; } void reset(T* new_ptr) { T* old_ptr = raw_ptr; raw_ptr = new_ptr; reference_count = 1; // reset back to 1 if(old_ptr != nullptr) { deleter(old_ptr); } } int use_count() const { return *reference_count; } }; // Array version T[] with custom deleter support template< typename T, typename TP > // Here TP already has the default type as default_deleter<T> class Shared_Ptr<T[], TP> // Must have Shared_Ptr<T> already defined for T[] to work { private: std::atomic<int*> reference_count; T * raw_ptr; // pointer to an array of T's TP deleter; public: Shared_Ptr(T *object) : raw_ptr{object}, deleter{default_deleter<T[]>()}, // Here we copy-construct specialized deleter<T[]> reference_count(new int(1)) // cannot use {}, use () { cout << "Shared_Ptr [] created with Ref count : " << *reference_count << endl; } Shared_Ptr(T* object, TP this_deleter): raw_ptr{object}, deleter{this_deleter}, reference_count(new int(1)) // cannot use {}, use () { cout << "Shared_Ptr [] created with Ref count : " << *reference_count << endl; } ~Shared_Ptr() { if(reference_count != nullptr) { --(*reference_count); cout << "Shared_Ptr [] destructor Ref count : " << *reference_count << endl; if(*reference_count == 0) { if(raw_ptr != nullptr) { deleter(raw_ptr); } } } } TP& get_deleter() { return deleter; } // define copy operations Shared_Ptr(const Shared_Ptr& other_shared_ptr) { reference_count = other_shared_ptr.reference_count.load(); raw_ptr = other_shared_ptr.raw_ptr; if(raw_ptr != nullptr) { ++(*reference_count); } deleter = other_shared_ptr.deleter; cout << "In Shared_Ptr [] Copy constructor Ref count : " << *reference_count << endl; } Shared_Ptr& operator=(const Shared_Ptr& other_shared_ptr) { reference_count = other_shared_ptr.reference_count.load(); raw_ptr = other_shared_ptr.raw_ptr; if(raw_ptr != nullptr) { ++(*reference_count); } deleter = other_shared_ptr.deleter; cout << "In Shared_Ptr [] Copy =operator Ref count : " << *reference_count << endl; return *this; } // Define move operations Shared_Ptr(Shared_Ptr&& other_shared_ptr) { // transfer the ownership of memory raw_ptr = other_shared_ptr.raw_ptr; other_shared_ptr.raw_ptr = nullptr; deleter = other_shared_ptr.deleter; reference_count = other_shared_ptr.reference_count.load(); other_shared_ptr.reference_count = nullptr; } Shared_Ptr& operator=(Shared_Ptr&& other_shared_ptr) { // transfer the ownership of memory raw_ptr = other_shared_ptr.raw_ptr; other_shared_ptr.raw_ptr = nullptr; deleter = other_shared_ptr.deleter; reference_count = other_shared_ptr.reference_count.load(); other_shared_ptr.reference_count = nullptr; return *this; } // define basic operations supported by a regular pointer // 1. dereference operation T& operator*() const { return *raw_ptr; } // 2. member selection operation T* operator->() const { return raw_ptr; } // 3. indexing operation ( ONLY for array version ) T& operator[](const int index) { return raw_ptr[index]; } // 4. equality check bool operator==(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr == other_shared_ptr.raw_ptr); } // 5. in-equality check bool operator!=(const Shared_Ptr& other_shared_ptr) const { return!(this->operator==(other_shared_ptr)); } // 6. less than bool operator<(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr < other_shared_ptr.raw_ptr); } // 7. greater than bool operator>(const Shared_Ptr& other_shared_ptr) const { return!(this->operator<(other_shared_ptr)); } // 8. less than or equal bool operator<=(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr <= other_shared_ptr.raw_ptr); } // 9. greater than or equal bool operator>=(const Shared_Ptr& other_shared_ptr) const { return(raw_ptr >= other_shared_ptr.raw_ptr); } T* get() const { return raw_ptr; } explicit operator bool() const { return (raw_ptr != nullptr); } T* release() { T* temp = raw_ptr; raw_ptr = nullptr; reference_count = nullptr; return temp; } void reset(T* new_ptr) { T* old_ptr = raw_ptr; raw_ptr = new_ptr; reference_count = 1; // reset back to 1 if(old_ptr != nullptr) { deleter(old_ptr); } } int use_count() const { return *reference_count; } }; // A custom deleter struct Custom_Deleter { void operator()(int* ptr) { if(ptr != nullptr) { cout << "Custom deleter" << endl; // do some other cleanup if any delete ptr; } } }; // A generic template based custom deleter template<typename G> // G for generic :) (kidding) struct Generic_Custom_Deleter { private: // NOTE: The count_ is just used to identify the // Generic_Custom_Deleter that is called // when a user changes the deleter after // the Shared_Ptr has been already created int count_; public: Generic_Custom_Deleter(int count = 0): count_{count} {} void operator()(G* ptr) { if(ptr != nullptr) { cout << "Generic Custom deleter - " << count_ << endl; // do some other cleanup if any delete ptr; } } }; // A function type deleter void deleter_function(int* ptr) { if(ptr != nullptr) { cout << "Function deleter" << endl; // do some other cleanup if any delete ptr; } return; } struct Custom_Array_Deleter { void operator()(int *ptr) { if(ptr != nullptr) { cout << "Custom_Array_Deleter" << endl; delete[] ptr; // see the array version of delete[] used here } return; } }; int main() { { Shared_Ptr<int> sh_ptr1(new int); // local scope 1 { Shared_Ptr<int> sh_ptr2 = sh_ptr1; // copy construction *sh_ptr2 = 5; } cout << "Outside local scope 1" << endl; cout << "*shptr1 : " << *sh_ptr1 << endl; } cout << endl; { const int size = 10; Shared_Ptr<int[]> sh_ptr3(new int[size]); // local scope 2 { Shared_Ptr<int[]> sh_ptr4 = sh_ptr3; // copy construction for(int index = 0; index < size; ++index) { sh_ptr4[index] = index*10; } } cout << "Outside local scope 2" << endl; for(int index = 0; index < size; ++index) { cout << "sh_ptr3[" << index << "] : " << sh_ptr3[index] << endl; } } return 0; } |
I will explain later why we have to use normal parantheses () instead of curly braces {}, way of construction for atomic reference count, also, why to use load () while copying atomic variables. For now, just focus on the working of shared pointers.
Let us see how reference count actually tracks the shared ownership. I have purposefully defined local scopes in the main() to show how reference count is checked by the Shared_Ptr’s destructor before deleting the pointer and releasing the memory.
Let us see the result now:
Shared_Ptr created with Ref count : 1
In Shared_Ptr Copy Constructor Ref count : 2
In Shared_Ptr Destructor Ref count : 1
Outside local scope 1
*shptr1 : 5
In Shared_Ptr Destructor Ref count : 0
default_deleter
Shared_Ptr [] created with Ref count : 1
In Shared_Ptr [] Copy constructor Ref count : 2
Shared_Ptr [] destructor Ref count : 1
Outside local scope 2
sh_ptr3[0] : 0
sh_ptr3[1] : 10
sh_ptr3[2] : 20
sh_ptr3[3] : 30
sh_ptr3[4] : 40
sh_ptr3[5] : 50
sh_ptr3[6] : 60
sh_ptr3[7] : 70
sh_ptr3[8] : 80
sh_ptr3[9] : 90
Shared_Ptr [] destructor Ref count : 0
default_deleter []
Try to track the reference count of shared Shared_Ptr instances and see when the actual delete is getting called.
The thread safety of shared pointers are to be discussed further. The standard only guarantees atomic operations on the reference count of the shared pointer and not on the object itself that shared pointer points to. I have only made the reference count as atomic here.
Enjoyed the chapter? Let me know in the comments below. Thanks! 🙂
There are many bugs in your shared_ptr implementation. Starting with the simplest
Shared_Ptr ptr{nullptr};
Why do you want ref_count even with the value of 1 should exist? Ideally it shouldn’t.
Additionally your content requires more than 50% width of screen but you allocated approx 30% of screen width. It gives pain.
I don’t think, people love to watch all the code at once but relevant part at once.
Hi Daya, I will look into the issues you have pointed out. Thanks for your review